Cursos de Hadoop

Cursos de Hadoop

Apache Hadoop é uma implementação de código aberto de duas soluções básicas BigData do Google: GFS (Google File System) e MapReduce programming paradigm é um framework completo destinado ao armazenamento e processamento de grandes blocos de dados. Hadoop é usado por grande parte dos fornecedores de serviços na nuvem, incluindo os líderes como Yahoo, Facebook e LinkedIn. Os cursos de treinamento ao vivo do Apache Hadoop demonstram, por meio de discussões e prática prática, os principais componentes do ecossistema Hadoop e como essas tecnologias podem ser usadas para resolver problemas de larga escala. O treinamento do Hadoop está disponível em vários formatos, incluindo treinamento ao vivo no local e treinamento online ao vivo e interativo. O treinamento ao vivo no local pode ser realizado nas instalações do cliente no Brasil ou nos centros de treinamento locais NobleProg no Brasil. O treinamento ao vivo remoto é realizado por meio de uma área de trabalho remota e interativa.



NobleProg -- Seu Provedor de Treinamento Local

Declaração de Clientes

★★★★★
★★★★★

Nossos Clientes

Programas do curso Apache Hadoop

Nome do Curso
Duração
Visão geral
Nome do Curso
Duração
Visão geral
21 horas
Visão geral
Este curso é dedicado à especialistas TI que buscam soluções para guardas e processar grandes sets de dados num ambiente de sistema distribuido.
Objetivo de cursio: Conseguir conhecimento sobre Hadoop cluster administration.
35 horas
Visão geral
Público:

O curso destina-se a especialistas em TI que procuram uma solução para armazenar e processar grandes conjuntos de dados em um ambiente de sistema distribuído

Go ai:

Profundo conhecimento em administração de cluster do Hadoop .
28 horas
Visão geral
Audience:

This course is intended to demystify big data/hadoop technology and to show it is not difficult to understand.
28 horas
Visão geral
Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. This course will introduce a developer to various components (HDFS, MapReduce, Pig, Hive and HBase) Hadoop ecosystem.
21 horas
Visão geral
Apache Hadoop is one of the most popular frameworks for processing Big Data on clusters of servers. This course delves into data management in HDFS, advanced Pig, Hive, and HBase. These advanced programming techniques will be beneficial to experienced Hadoop developers.

Audience: developers

Duration: three days

Format: lectures (50%) and hands-on labs (50%).
21 horas
Visão geral
Este curso introduz HBase, e é dirigido a todos aqueles desenvolvedores que utilizarão o HBase para desenvolver aplicações, e administradores que vao manejar clusters HBase.

Vamos a guiar um desenvolvedor através da arquitetura HBase e modelagem de dados e desenvolvimento de aplicações em HBase. Também vamos discutir utilizando MapReduce com HBase, e alguns tópicos administrativos.
21 horas
Visão geral
Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. In this three (optionally, four) days course, attendees will learn about the business benefits and use cases for Hadoop and its ecosystem, how to plan cluster deployment and growth, how to install, maintain, monitor, troubleshoot and optimize Hadoop. They will also practice cluster bulk data load, get familiar with various Hadoop distributions, and practice installing and managing Hadoop ecosystem tools. The course finishes off with discussion of securing cluster with Kerberos.

“…The materials were very well prepared and covered thoroughly. The Lab was very helpful and well organized”
— Andrew Nguyen, Principal Integration DW Engineer, Microsoft Online Advertising

Audience

Hadoop administrators

Format

Lectures and hands-on labs, approximate balance 60% lectures, 40% labs.
21 horas
Visão geral
Apache Hadoop is the most popular framework for processing Big Data. Hadoop provides rich and deep analytics capability, and it is making in-roads in to tradional BI analytics world. This course will introduce an analyst to the core components of Hadoop eco system and its analytics

Audience

Business Analysts

Duration

three days

Format

Lectures and hands on labs.
21 horas
Visão geral
Hadoop is the most popular Big Data processing framework.
14 horas
Visão geral
Audience

- Developers

Format of the Course

- Lectures, hands-on practice, small tests along the way to gauge understanding
21 horas
Visão geral
This course is intended for developers, architects, data scientists or any profile that requires access to data either intensively or on a regular basis.

The major focus of the course is data manipulation and transformation.

Among the tools in the Hadoop ecosystem this course includes the use of Pig and Hive both of which are heavily used for data transformation and manipulation.

This training also addresses performance metrics and performance optimisation.

The course is entirely hands on and is punctuated by presentations of the theoretical aspects.
14 horas
Visão geral
In this instructor-led training in Brasil, participants will learn the core components of the Hadoop ecosystem and how these technologies can be used to solve large-scale problems. By learning these foundations, participants will improve their ability to communicate with the developers and implementers of these systems as well as the data scientists and analysts that many IT projects involve.

Audience

- Project Managers wishing to implement Hadoop into their existing development or IT infrastructure
- Project Managers needing to communicate with cross-functional teams that include big data engineers, data scientists and business analysts
14 horas
Visão geral
Apache Samza is an open-source near-realtime, asynchronous computational framework for stream processing. It uses Apache Kafka for messaging, and Apache Hadoop YARN for fault tolerance, processor isolation, security, and resource management.

This instructor-led, live training introduces the principles behind messaging systems and distributed stream processing, while walking participants through the creation of a sample Samza-based project and job execution.

By the end of this training, participants will be able to:

- Use Samza to simplify the code needed to produce and consume messages.
- Decouple the handling of messages from an application.
- Use Samza to implement near-realtime asynchronous computation.
- Use stream processing to provide a higher level of abstraction over messaging systems.

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 horas
Visão geral
Alluxio is an open-source virtual distributed storage system that unifies disparate storage systems and enables applications to interact with data at memory speed. It is used by companies such as Intel, Baidu and Alibaba.

In this instructor-led, live training, participants will learn how to use Alluxio to bridge different computation frameworks with storage systems and efficiently manage multi-petabyte scale data as they step through the creation of an application with Alluxio.

By the end of this training, participants will be able to:

- Develop an application with Alluxio
- Connect big data systems and applications while preserving one namespace
- Efficiently extract value from big data in any storage format
- Improve workload performance
- Deploy and manage Alluxio standalone or clustered

Audience

- Data scientist
- Developer
- System administrator

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
Tigon is an open-source, real-time, low-latency, high-throughput, native YARN, stream processing framework that sits on top of HDFS and HBase for persistence. Tigon applications address use cases such as network intrusion detection and analytics, social media market analysis, location analytics, and real-time recommendations to users.

This instructor-led, live training introduces Tigon's approach to blending real-time and batch processing as it walks participants through the creation a sample application.

By the end of this training, participants will be able to:

- Create powerful, stream processing applications for handling large volumes of data
- Process stream sources such as Twitter and Webserver Logs
- Use Tigon for rapid joining, filtering, and aggregating of streams

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
Datameer is a business intelligence and analytics platform built on Hadoop. It allows end-users to access, explore and correlate large-scale, structured, semi-structured and unstructured data in an easy-to-use fashion.

In this instructor-led, live training, participants will learn how to use Datameer to overcome Hadoop's steep learning curve as they step through the setup and analysis of a series of big data sources.

By the end of this training, participants will be able to:

- Create, curate, and interactively explore an enterprise data lake
- Access business intelligence data warehouses, transactional databases and other analytic stores
- Use a spreadsheet user-interface to design end-to-end data processing pipelines
- Access pre-built functions to explore complex data relationships
- Use drag-and-drop wizards to visualize data and create dashboards
- Use tables, charts, graphs, and maps to analyze query results

Audience

- Data analysts

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 horas
Visão geral
In this instructor-led, live training in Brasil (onsite or remote), participants will learn how to deploy and manage Apache NiFi in a live lab environment.

By the end of this training, participants will be able to:

- Install and configure Apachi NiFi.
- Source, transform and manage data from disparate, distributed data sources, including databases and big data lakes.
- Automate dataflows.
- Enable streaming analytics.
- Apply various approaches for data ingestion.
- Transform Big Data and into business insights.
7 horas
Visão geral
In this instructor-led, live training in Brasil, participants will learn the fundamentals of flow-based programming as they develop a number of demo extensions, components and processors using Apache NiFi.

By the end of this training, participants will be able to:

- Understand NiFi's architecture and dataflow concepts.
- Develop extensions using NiFi and third-party APIs.
- Custom develop their own Apache Nifi processor.
- Ingest and process real-time data from disparate and uncommon file formats and data sources.
28 horas
Visão geral
Hadoop is a popular Big Data processing framework. Python is a high-level programming language famous for its clear syntax and code readibility.

In this instructor-led, live training, participants will learn how to work with Hadoop, MapReduce, Pig, and Spark using Python as they step through multiple examples and use cases.

By the end of this training, participants will be able to:

- Understand the basic concepts behind Hadoop, MapReduce, Pig, and Spark
- Use Python with Hadoop Distributed File System (HDFS), MapReduce, Pig, and Spark
- Use Snakebite to programmatically access HDFS within Python
- Use mrjob to write MapReduce jobs in Python
- Write Spark programs with Python
- Extend the functionality of pig using Python UDFs
- Manage MapReduce jobs and Pig scripts using Luigi

Audience

- Developers
- IT Professionals

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
Sqoop is an open source software tool for transfering data between Hadoop and relational databases or mainframes. It can be used to import data from a relational database management system (RDBMS) such as MySQL or Oracle or a mainframe into the Hadoop Distributed File System (HDFS). Thereafter, the data can be transformed in Hadoop MapReduce, and then re-exported back into an RDBMS.

In this instructor-led, live training, participants will learn how to use Sqoop to import data from a traditional relational database to Hadoop storage such HDFS or Hive and vice versa.

By the end of this training, participants will be able to:

- Install and configure Sqoop
- Import data from MySQL to HDFS and Hive
- Import data from HDFS and Hive to MySQL

Audience

- System administrators
- Data engineers

Format of the Course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- To request a customized training for this course, please contact us to arrange.
21 horas
Visão geral
Big data analytics involves the process of examining large amounts of varied data sets in order to uncover correlations, hidden patterns, and other useful insights.

The health industry has massive amounts of complex heterogeneous medical and clinical data. Applying big data analytics on health data presents huge potential in deriving insights for improving delivery of healthcare. However, the enormity of these datasets poses great challenges in analyses and practical applications to a clinical environment.

In this instructor-led, live training (remote), participants will learn how to perform big data analytics in health as they step through a series of hands-on live-lab exercises.

By the end of this training, participants will be able to:

- Install and configure big data analytics tools such as Hadoop MapReduce and Spark
- Understand the characteristics of medical data
- Apply big data techniques to deal with medical data
- Study big data systems and algorithms in the context of health applications

Audience

- Developers
- Data Scientists

Format of the Course

- Part lecture, part discussion, exercises and heavy hands-on practice.

Note

- To request a customized training for this course, please contact us to arrange.
35 horas
Visão geral
This instructor-led, live training in Brasil (online or onsite) is aimed at system administrators who wish to learn how to set up, deploy and manage Hadoop clusters within their organization.

By the end of this training, participants will be able to:

- Install and configure Apache Hadoop.
- Understand the four major components in the Hadoop ecoystem: HDFS, MapReduce, YARN, and Hadoop Common.
- Use Hadoop Distributed File System (HDFS) to scale a cluster to hundreds or thousands of nodes.
- Set up HDFS to operate as storage engine for on-premise Spark deployments.
- Set up Spark to access alternative storage solutions such as Amazon S3 and NoSQL database systems such as Redis, Elasticsearch, Couchbase, Aerospike, etc.
- Carry out administrative tasks such as provisioning, management, monitoring and securing an Apache Hadoop cluster.
7 horas
Visão geral
Este curso cobre o básico sobre como utilizar a linguagem Hive SQL, para todas aquelas pessoas que querem extraír dados do Hive. O objetivo deste curso é proporcionar todas as ferramentas necessárias para que os participantes possam analizar os dados de forma clara e precisa.
21 horas
Visão geral
O Cloudera Impala é um query engine SQL MPP de código aberto feito para clusters Apache Hadoop.
Ele permite aos usuarios a abertura de queries SQL de latencia baixa para todos os dados guardados no Hadoop Distributed File System e Apache Hbase sem requerir movimento de dados ou transformacao.
Este curso vai dirigido a analistas de sistemas e cientístas de dados.
21 horas
Visão geral
Apache Ambari is an open-source management platform for provisioning, managing, monitoring and securing Apache Hadoop clusters.

In this instructor-led live training participants will learn the management tools and practices provided by Ambari to successfully manage Hadoop clusters.

By the end of this training, participants will be able to:

- Set up a live Big Data cluster using Ambari
- Apply Ambari's advanced features and functionalities to various use cases
- Seamlessly add and remove nodes as needed
- Improve a Hadoop cluster's performance through tuning and tweaking

Audience

- DevOps
- System Administrators
- DBAs
- Hadoop testing professionals

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 horas
Visão geral
This instructor-led, live training in (online or onsite) introduces Hortonworks Data Platform (HDP) and walks participants through the deployment of Spark + Hadoop solution.

By the end of this training, participants will be able to:

- Use Hortonworks to reliably run Hadoop at a large scale.
- Unify Hadoop's security, governance, and operations capabilities with Spark's agile analytic workflows.
- Use Hortonworks to investigate, validate, certify and support each of the components in a Spark project.
- Process different types of data, including structured, unstructured, in-motion, and at-rest.

Próximos Cursos de Apache Hadoop

Cursos de fim de semana de Hadoop, Treinamento tardiurno de Hadoop, Treinamento em grupo de Apache Hadoop, Apache Hadoop guiado por instrutor, Treinamento de Hadoop de fim de semana, Cursos de Apache Hadoop tardiurnos, coaching de Hadoop, Instrutor de Apache Hadoop, Treinador de Hadoop, Cursos de treinamento de Apache Hadoop, Aulas de Apache Hadoop, Hadoop no local do cliente, Cursos privados de Hadoop, Treinamento individual de Apache Hadoop

Descontos em Cursos

Boletim Informativo de Descontos

Nós respeitamos a privacidade dos seus dados. Nós não vamos repassar ou vender o seu email para outras empresas.
Você sempre poderá editar as suas preferências ou cancelar a sua inscriçāo.

is growing fast!

We are looking to expand our presence in Brazil!

As a Business Development Manager you will:

  • expand business in Brazil
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions