Cursos de Aprendizado de Máquinas (Machine Learning) | Cursos de Machine Learning

Cursos de Aprendizado de Máquinas (Machine Learning)

Os cursos de treinamento de Aprendizado por Máquina (ML) ao vivo, ministrados por instrutor, demonstram, por meio de práticas práticas, como aplicar técnicas e ferramentas de aprendizado de máquina para resolver problemas do mundo real em vários setores. Os cursos NobleProg ML abrangem diferentes linguagens de programação e frameworks, incluindo Python, linguagem R e Matlab. Os cursos Machine Learning são oferecidos para diversas aplicações do setor, incluindo finanças, bancos e seguros, e abrangem os fundamentos do Machine Learning, bem como abordagens mais avançadas, como o Deep Learning. O treinamento Machine Learning está disponível como "treinamento ao vivo no local" ou "treinamento remoto ao vivo". Treinamento ao vivo no local pode ser realizado localmente nas instalações do cliente em Brasil ou nos centros de treinamento corporativo da NobleProg em Brasil . O treinamento ao vivo remoto é realizado por meio de uma área de trabalho remota e interativa. NobleProg - seu provedor de treinamento local

Machine Translated

Declaração de Clientes

★★★★★
★★★★★

Nossos Clientes

Programas do curso ML (Machine Learning)

Nome do Curso
Duração
Visão geral
Nome do Curso
Duração
Visão geral
14 horas
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
21 horas
In this instructor-led, live training in Brasil, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.
28 horas
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
28 horas
This is a 4 day course introducing AI and it's application using the Python programming language. There is an option to have an additional day to undertake an AI project on completion of this course.
21 horas
Deep Reinforcement Learning refers to the ability of an "artificial agent" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches.

In this instructor-led, live training, participants will learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.

By the end of this training, participants will be able to:

- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning
- Apply advanced Reinforcement Learning algorithms to solve real-world problems
- Build a Deep Learning Agent

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
In this instructor-led, live training in Brasil, participants will learn how to implement deep learning models for telecom using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning.
- Learn the applications and uses of deep learning in telecom.
- Use Python, Keras, and TensorFlow to create deep learning models for telecom.
- Build their own deep learning customer churn prediction model using Python.
7 horas
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
7 horas
Este curso de treinamento é para pessoas que gostariam de aplicar técnicas básicas de Machine Learning em aplicações práticas.

Público

Cientistas de dados e estatísticos que têm alguma familiaridade com o aprendizado de máquina e sabem como programar R. A ênfase deste curso é nos aspectos práticos da preparação de dados / modelos, execução, análise post hoc e visualização. O objetivo é fornecer uma introdução prática ao aprendizado de máquina aos participantes interessados em aplicar os métodos no trabalho.

Exemplos específicos do setor são usados para tornar o treinamento relevante para o público.
14 horas
Este curso de treinamento é para pessoas que gostariam de aplicar o Machine Learning de forma pratica, o objetivo do treinamento é fornecer as ferramentas essenciais para a aplicaçao pratica e cotidiana dos conhecimentos em Machine Learning.

É um curso que vai dirigido à cientístas de dados e estatísticos que tem alguma familiarização com estatísticas e como programar em R (ou Python ou outra linguagem a sua escolha). A enfase deste curso é em aspectos práticos da preparação do modelo de dadosm execução, análise post hoc e visualização.
14 horas
O objetivo deste curso é fornecer uma proficiência básica na aplicação de métodos de Machine Learning na prática. Através do uso da plataforma de programação R e de suas diversas bibliotecas, e com base em vários exemplos práticos, este curso ensina como usar os blocos de construção mais importantes do Machine Learning , como tomar decisões de modelagem de dados, interpretar as saídas dos algoritmos e validar os resultados.

Nosso objetivo é fornecer a você as habilidades para entender e usar as ferramentas mais fundamentais da caixa de ferramentas Machine Learning confiança e evitar as armadilhas comuns dos aplicativos da Data Science .
21 horas
Rede Neural Artificial é um modelo computacional de dados utilizado no desenvolvimento de sistemas de Inteligência Artificial (IA) capazes de realizar tarefas "inteligentes". Redes neurais são comumente usadas em aplicações de Aprendizado de Máquina (ML), que são elas mesmas uma implementação de IA. Deep Learning é um subconjunto do ML.
21 horas
This course will be a combination of theory and practical work with specific examples used throughout the event.
21 horas
This course introduces machine learning methods in robotics applications.

It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition.

After a short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software.
21 horas
MATLAB is a numerical computing environment and programming language developed by MathWorks.
14 horas
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Scala programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 horas
R is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
21 horas
O PredictionIO é uma ferramenta de código aberto para o Machine Learning, contruída em um stack de código aberto de alta qualidade, o objetivo do curso é que o participante possa entender os conceitos chave da aplicação de Machine Learning cm o PredictionIO.
35 horas
Este curso é criado para pessoas que nao tem nenhuma experiência com probabilidade e estatística, e o objetivo é proporcionar todas as ferramentas sumamente necessárias para que os participates tenham as capacidades e conhecimentos iniciais estatísticos e probabilísticos para enfrentar os problemas organizacionais.
21 horas
Course is dedicated for those who would like to know an alternative program to the commercial MATLAB package. The three-day training provides comprehensive information on moving around the environment and performing the OCTAVE package for data analysis and engineering calculations. The training recipients are beginners but also those who know the program and would like to systematize their knowledge and improve their skills. Knowledge of other programming languages is not required, but it will greatly facilitate the learners' acquisition of knowledge. The course will show you how to use the program in many practical examples.
21 horas
This training course is for people that would like to apply Machine Learning in practical applications for their team. The training will not dive into technicalities and revolve around basic concepts and business/operational applications of the same.

Target Audience

- Investors and AI entrepreneurs
- Managers and Engineers whose company is venturing into AI space
- Business Analysts & Investors
7 horas
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.

In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.

By the end of this training, participants will be able to:

- Programmatically create training sets to enable the labeling of massive training sets
- Train high-quality end models by first modeling noisy training sets
- Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
In this instructor-led, live training, participants will learn how to use the iOS Machine Learning (ML) technology stack as they step through the creation and deployment of an iOS mobile app.

By the end of this training, participants will be able to:

- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of live projects.

Audience

- Developers
- Data scientists
- Banking professionals with a technical background

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.

In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.

By the end of this training, participants will be able to:

- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Cortana Intelligence Suite is a bundle of integrated products and services on the Microsoft Azure Cloud that enable entities to transform data into intelligent actions.

In this instructor-led, live training, participants will learn how to use the components that are part of the Cortana Intelligence Suite to build data-driven intelligent applications.

By the end of this training, participants will be able to:

- Learn how to use Cortana Intelligence Suite tools
- Acquire the latest knowledge of data management and analytics
- Use Cortana components to turn data into intelligent action
- Use Cortana to build applications from scratch and launch it on the cloud

Audience

- Data scientists
- Programmers
- Developers
- Managers
- Architects

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
AI is a collection of technologies for building intelligent systems capable of understanding data and the activities surrounding the data to make "intelligent decisions". For Telecom providers, building applications and services that make use of AI could open the door for improved operations and servicing in areas such as maintenance and network optimization.

In this course we examine the various technologies that make up AI and the skill sets required to put them to use. Throughout the course, we examine AI's specific applications within the Telecom industry.

Audience

- Network engineers
- Network operations personnel
- Telecom technical managers

Format of the course

- Part lecture, part discussion, hands-on exercises
14 horas
This classroom based training session will explore machine learning techniques, with computer based examples and case study solving exercises using a relevant programme languauge

Last Updated:

Próximos Cursos de ML (Machine Learning)

Cursos de fim de semana de Machine Learning (ML), Treinamento tardiurno de Aprendizado de Máquinas (Machine Learning), Treinamento em grupo de Aprendizado de Máquinas (Machine Learning), Machine Learning (ML) guiado por instrutor, Treinamento de Machine Learning (ML) de fim de semana, Cursos de Machine Learning (ML) tardiurnos, coaching de ML (Machine Learning), Instrutor de Aprendizado de Máquinas (Machine Learning), Treinador de ML (Machine Learning), Cursos de treinamento de ML (Machine Learning), Aulas de Machine Learning (ML), Machine Learning (ML) no local do cliente, Cursos privados de Aprendizado de Máquinas (Machine Learning), Treinamento individual de Aprendizado de Máquinas (Machine Learning)Cursos de fim de semana de ML (Machine Learning), Treinamento tardiurno de Machine Learning, Treinamento em grupo de ML (Machine Learning), Machine Learning (ML) guiado por instrutor, Treinamento de Machine Learning de fim de semana, Cursos de Machine Learning (ML) tardiurnos, coaching de Machine Learning (ML), Instrutor de Machine Learning, Treinador de ML (Machine Learning), Cursos de treinamento de Machine Learning (ML), Aulas de Machine Learning, Machine Learning (ML) no local do cliente, Cursos privados de Machine Learning, Treinamento individual de ML (Machine Learning)

Descontos em Cursos

Boletim Informativo de Descontos

Nós respeitamos a privacidade dos seus dados. Nós não vamos repassar ou vender o seu email para outras empresas.
Você sempre poderá editar as suas preferências ou cancelar a sua inscriçāo.

is growing fast!

We are looking to expand our presence in Brazil!

As a Business Development Manager you will:

  • expand business in Brazil
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions